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Problem 1. (by Prof. Refik Keskin)
We have the following conjecture

Conjecture 2. Let m and n be positive integers. Then the Diophantine equation

(1) m2x2 + 4xy − n2y2 = 4

has a positive solution (x, y) if and only if m = n or m = 1, 2, or n = 1, 2.

Problem 3. (by Prof. Refik Keskin)
Can you characterize all solutions of the Diophantine equation

(2) x2 + kxy − y2 = k,

where k is an integer.

Problem 4. (by Prof. Kálmán Győry)
Characterize all number fields K such that

(3) OK = Z[α] = Z[1, α, α2, · · · , αd−1],

where d = [K : Q] and α is a unit in OK. [ It is analogue to Hasse’s problem
concerning monogenic number fields].

Problem 5. (by Prof. Kálmán Győry)
Given d, denote by Nd(X) the number of number fields of degree d such that OK is
generated over Z by a single unit of OK and |DK| ≤ X. Is it true that Nd(X) tends
to infinity as X tends to infinity? [ This is closely related to a recent quantitative
theorem of Barghava and al.]

Problem 6. (by Prof. Andrzej Da̧browski)
Is the set of integer solutions of the equation

(4) n! + 1 = x2 + y2

infinite ? (For a short discussion see section 3 in the paper: A. Da̧browski, On
the Brocard-Ramanujan problem and generalizations, Coll. Math. 126 (2012),
105-11).

Problem 7. (by Prof. Andrzej Da̧browski)
Let C denote the classical Cantor set. Consider fractional parts of the values of the
Riemann zeta function ζ(s) at integral arguments n > 1 (we can consider integers
n 6= 1). Determine the set of n’s such that {ζ(n)} ∈ C. Similar question for
L-function attached to an elliptic curve over a number field K (or attached to a
modular form or to a motive).
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Problem 8. (by Prof. Shanta Laishram)
Let

(5) S = {n ∈ N : σ2(n) = σ3(n)},

where σk(n) denotes the sum of digits of n in base k, (k ≥ 2 integer.)
Is S infinite?

Equivalently, solve the equation

(6) 2n0 + 2n1 + · · · 2ns =

r∑
i=0

ai3
mi ,

where ai ∈ {1, 2}.

Problem 9. (by Prof. Shanta Laishram)
It is known that the equation

(7)

n∏
i=1

(i2 + 1) = y2

has only the solution given by 2 · 5 · 10 = 102.

Conjecture 10. The equation

(8)

n∏
i=1

((n+ i)2 + 1) = y2,

in variables n, k and y has only the solution given by 2 · 5 · 10 = 102.

Problem 11. (by Prof. Eva Goedhard)
Bugeaud and Dujella [2]–[3] considered the problem of finding positive integers a
and b such that one of the sets {a + 1, b + 1, ab + 1} or {a + 1, ab + 1, ab2 + 1}
is comprised entirely of perfect k-th powers, for k ≥ 3. (The number of solutions
is known to be finite as it was considered by A. Kihel and O. Kihel [5] for more
general sets). This problem consists of solving

(9) (xk − 1)(yk − 1) = zk − 1

or

(10) (xk − 1)(yk − 1) = (zk − 1)2.

Bugeaud [2] and Bennett [1] gave all solutions of equation (9) for k ≥ 3 and char-
acterized those of equation (10), for k ≥ 4.

How many solutions are there to equation (10) for k = 3?

Problem 12. (by Prof. Eva Goedhard)
Let x, y, z ≥ 1 be integers and a, b, c be fixed positive integers. The equation

(11) (a2cxk − 1)(b2cyk − 1) = (abczk − 1)2

has no solutions for a2xk 6= b2yk when k ≥ 7.
a. What happens when k = 3, 4, 5, 6?
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b. Solve

(12) (a2cx3 − 1)(b2cy3 − 1) = z2

when a2x3 6= b2y3.
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Problem 13. (by Prof. Huilin Zhu)
For example, let us consider the set

S0 = {a1 = 23 − 1, a2 = 43 − 1, a3 = 223 − 1}.

Notice that the ai verify

a1 · a2 = 212, a1 · a3 = 8192, a2 · a3 = 24572.

and the cardinal number of S0 is 3.
• In general, we consider the set S of the numbers ai defined by

ai = xni − 1 = dmi
2,

where xi > 1, n > 2 is a constant and d is a square-free constant. What is the
cardinal of S? Could it be infinite? If not, what is the bound of its cardinality?
• More generally, if n is not fixed, i.e.

ai = xni
i − 1 = dmi

2,

where xi > 1, ni > 2 and d is square-free constant. Then what can we say about
the cardinality of the set S?

Problem 14. (by Prof. Omar Kihel)
Let K be a number field and R its ring of integers. For every α ∈ R, does exist a
primitive element θ ∈ R such that α ∈ Z[θ]?

Problem 15. (by Prof. Omar Kihel)
Find an example of a number field K such that

(13) R = ∪ni=1Z[θi],

i.e. its ring of integers R is not monogenic.
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The remaining problems of this document are proposed
by Prof. Claude Levesque and Prof. Michel Waldschmidt

Let K be a number field. Using Schmidt’s Subspace Theorem, it has been proved
in [2, Corollary 3.6] that there exists a positive constant cK, depending only on K
with the following property. Let ε be a unit in K of degree ≥ 3. Let Fε(X,Y ) ∈
Z[X,Y ] be the binary form of degree [Q(ε) : Q] such that Fε(X, 1) is the irreducible
polynomial of ε. If the height h(ε) of ε satisfies h(ε) ≥ cK , then there is no
(x, y) ∈ Z2 satisfying Fε(x, y) = ±1 and xy 6= 0.

Here, h is the logarithmic height - since two norms on a finite dimensional vector
space are equivalent, the choice of the height does not matter.

Our first problem is the following one.

Problem LW1. Give an effective upper bound for cK .

One could be more ambitious and ask for an upper bound depending only on
the degree of K. For such a uniform estimate, some exceptional families of Thue
equations having very large exceptional solutions should be excluded. . . at least to
start with. Let us give examples of such families.

Let c ∈ {1,−1}. Let g(X) be a non constant monic polynomial of degree n− 2
and let a be a rational integer. Consider the (assumed irreducible) polynomial

f(X) = X(X − a)g(X) + c,

which is the minimal polynomial of a unit of degree n . Then the binary form

F (X,Y ) = Y nf(X/Y ) = X(X − aY )Y n−2g(X/Y ) + cY n

satisfies F (a, 1) = c, F (−a,−1) = (−1)nc. This shows that the exceptional solution
(a, 1) can be as large as one pleases.

Consider the special case where the polynomial (X − a)g(X) has n− 1 distinct
roots in Z. Let c ∈ {1,−1}, n ≥ 3 and let f(X) be the (assumed irreducible)
polynomial

f(X) = X

n−1∏
i=1

(X − ai) + c

where the ai’s are distinct nonzero integers. Then the binary form

F (X,Y ) = Y nf(X/Y ) = X

n−1∏
i=1

(X − aiY ) + cY n

satisfies for i = 1, . . . , n− 1,

F (ai, 1) = c, F (−ai,−1) = (−1)nc.

This last example shows that the larger n is, the larger the cardinality of exceptional
solutions is.

As a first step towards a uniform bound, we restrict ourselves to specific families
of Thue equations. To start with, consider the family Kt (t ≥ 0) of the simplest
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cubic fields of Shanks. The field Kt is the cyclic cubic field Q(υt) where υt is a root
of the polynomial Pt(X, 1) where

Pt(X,Y ) = X3 − (t− 1)X2Y − (t+ 2)XY 2 − Y 3.

Problem LW2. Does there exist an absolute positive constant c with the
following property. Let t ≥ 0 and let ε be a unit of Kt with ε 6= ±1. Let (x, y) ∈ Z×Z
satisfy max{|x|, |y|} ≥ 2 and Fε(x, y) = ±1. Then

(14) max{|x|, |y|, t, h(ε)} ≤ c.

For this family, a partial result is known, involving a rank one subgroup of the
group of units of Kt. Indeed, the following result is proved in [3]. The assumptions
a ≥ 1, Fua

t
(x, y) = ±1 and max{|x|, |y|} ≥ 2 imply (14) with ε = uat and c replaced

with another effectively computable absolute constant. It would be interesting to
decide whether the list of 27 exotic solutions given in [3, § 15] is complete.

Problem LW3. Is it true that the conditions Fua
t
(x, y) = ±1 and max{|x|, |y|} ≥

2 imply t ≤ 4 and a ≤ 5?

The next and last problem is a program of research. Let Ft ∈ Z[X,Y ] be a
family of irreducible binary forms of degrees ≥ 3. For each t ≥ 0, let αt be a
root of Ft(X, 1). For ε a unit of degree ≥ 3 in Q(αt), we have a Thue equation
Fε(X,Y ) = ±1 for which it makes sense to consider the analogs of Problems LW2
and LW3.

Problem LW4. For each of the 22 families of Thue equations listed in [1,
§4.1], prove that there exists an absolute constant c > 0 such that, as soon as
max{t, h(ε)} ≥ c, there is no (x, y) ∈ Z2 satisfying max{|x|, |y|} ≥ 2 and Fε(x, y) =
±1.

A first step would be to consider only a rank one subgroup of the units of Q(αt).
So far, this has been done only for the simplest cubic fields.
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