Friendly workshop on Diophantine Equations and related problems (FWDERP 2019, Bursa Uludağ University, Bursa, Turkey)

Problem Session

edited by Alain Togbé

Problem 1. (by Prof. Refik Keskin)

We have the following conjecture

Conjecture 2. Let m and n be positive integers. Then the Diophantine equation

(1) $m^2x^2 + 4xy - n^2y^2 = 4$

has a positive solution (x, y) if and only if m = n or m = 1, 2, or n = 1, 2.

Problem 3. (by Prof. Refik Keskin)

Can you characterize all solutions of the Diophantine equation

 $(2) x^2 + kxy - y^2 = k,$

where k is an integer.

Problem 4. (by Prof. Kálmán Győry) Characterize all number fields \mathbb{K} such that

(3) $\mathcal{O}_{\mathbb{K}} = \mathbb{Z}[\alpha] = \mathbb{Z}[1, \alpha, \alpha^2, \cdots, \alpha^{d-1}],$

where $d = [\mathbb{K} : \mathbb{Q}]$ and α is a unit in $\mathcal{O}_{\mathbb{K}}$. [It is analogue to Hasse's problem concerning monogenic number fields].

Problem 5. (by Prof. Kálmán Győry)

Given d, denote by $N_d(X)$ the number of number fields of degree d such that $\mathcal{O}_{\mathbb{K}}$ is generated over \mathbb{Z} by a single unit of $\mathcal{O}_{\mathbb{K}}$ and $|D_{\mathbb{K}}| \leq X$. Is it true that $N_d(X)$ tends to infinity as X tends to infinity? [This is closely related to a recent quantitative theorem of Barghava and al.]

Problem 6. (by Prof. Andrzej Dąbrowski) Is the set of integer solutions of the equation

(4)
$$n! + 1 = x^2 + y^2$$

infinite ? (For a short discussion see section 3 in the paper: A. Dąbrowski, On the Brocard-Ramanujan problem and generalizations, Coll. Math. **126** (2012), 105-11).

Problem 7. (by Prof. Andrzej Dąbrowski)

Let C denote the classical Cantor set. Consider fractional parts of the values of the Riemann zeta function $\zeta(s)$ at integral arguments n > 1 (we can consider integers $n \neq 1$). Determine the set of n's such that $\{\zeta(n)\} \in C$. Similar question for L-function attached to an elliptic curve over a number field K (or attached to a modular form or to a motive).

Problem 8. (by Prof. Shanta Laishram) Let

(5)
$$S = \{ n \in \mathbb{N} : \sigma_2(n) = \sigma_3(n) \},$$

where $\sigma_k(n)$ denotes the sum of digits of n in base k, $(k \ge 2 \text{ integer.})$ Is S infinite?

Equivalently, solve the equation

(6)
$$2^{n_0} + 2^{n_1} + \dots + 2^{n_s} = \sum_{i=0}^r a_i 3^{m_i},$$

where $a_i \in \{1, 2\}$.

Problem 9. (by Prof. Shanta Laishram) It is known that the equation

(7)
$$\prod_{i=1}^{n} (i^2 + 1) = y^2$$

has only the solution given by $2 \cdot 5 \cdot 10 = 10^2$.

Conjecture 10. The equation

(8)
$$\prod_{i=1}^{n} ((n+i)^2 + 1) = y^2,$$

in variables n, k and y has only the solution given by $2 \cdot 5 \cdot 10 = 10^2$.

Problem 11. (by Prof. Eva Goedhard)

Bugeaud and Dujella [2]–[3] considered the problem of finding positive integers a and b such that one of the sets $\{a + 1, b + 1, ab + 1\}$ or $\{a + 1, ab + 1, ab^2 + 1\}$ is comprised entirely of perfect k-th powers, for $k \ge 3$. (The number of solutions is known to be finite as it was considered by A. Kihel and O. Kihel [5] for more general sets). This problem consists of solving

(9)
$$(x^k - 1)(y^k - 1) = z^k - 1$$

or

(10)
$$(x^k - 1)(y^k - 1) = (z^k - 1)^2.$$

Bugeaud [2] and Bennett [1] gave all solutions of equation (9) for $k \ge 3$ and characterized those of equation (10), for $k \ge 4$.

How many solutions are there to equation (10) for k = 3?

Problem 12. (by Prof. Eva Goedhard)

Let $x, y, z \ge 1$ be integers and a, b, c be fixed positive integers. The equation

(11)
$$(a^2cx^k - 1)(b^2cy^k - 1) = (abcz^k - 1)^2$$

has no solutions for $a^2x^k \neq b^2y^k$ when $k \geq 7$.

a. What happens when k = 3, 4, 5, 6?

b. Solve

(12)
$$(a^2cx^3 - 1)(b^2cy^3 - 1) = z^2$$

when $a^2x^3 \neq b^2y^3$.

References

- [1] M.A. Bennett, "The Diophantine equation $(x^k 1)(y^k 1) = (z^k 1)^t$ ", Indag. Math. (N.S.), 18 (2007), no. 4, 507–525.
- [2] Y. Bugeaud, "On the Diophantine equation $(x^k 1)(y^k 1) = (z^k 1)$ ", Indag. Math. (N.S.), **15** (2004), no. 1, 21–28.
- [3] Y. Bugeaud and A. Dujella, "On a problem of Diophantus for higher powers", Math. Proc. Cambridge Philos. Soc., 135 (2003), no. 1, 1–10.
- [4] E. Goedhart and H.G. Grundman, "On the Diophantine equation $NX^2 + 2^L 3^M = Y^{N"}$, J. Number Theory **141** (2014), 214–224.
- [5] A. Kihel and O. Kihel, "Sets in which the product of any K elements increased by t is a kth-power", Fibonacci Quart. 39 (2001), no. 2, 98–100.

Problem 13. (by Prof. Huilin Zhu) For example, let us consider the set

$$S_0 = \{a_1 = 2^3 - 1, a_2 = 4^3 - 1, a_3 = 22^3 - 1\}.$$

Notice that the a_i verify

$$a_1 \cdot a_2 = 21^2$$
, $a_1 \cdot a_3 = 819^2$, $a_2 \cdot a_3 = 2457^2$.

and the cardinal number of S_0 is 3.

• In general, we consider the set S of the numbers a_i defined by

$$a_i = x_i^n - 1 = dm_i^2,$$

where $x_i > 1$, n > 2 is a constant and d is a square-free constant. What is the cardinal of S? Could it be infinite? If not, what is the bound of its cardinality?

• More generally, if n is not fixed, i.e.

$$a_i = x_i^{n_i} - 1 = dm_i^2,$$

where $x_i > 1$, $n_i > 2$ and d is square-free constant. Then what can we say about the cardinality of the set S?

Problem 14. (by Prof. Omar Kihel) Let \mathbb{K} be a number field and R its ring of integers. For every $\alpha \in R$, does exist a primitive element $\theta \in R$ such that $\alpha \in \mathbb{Z}[\theta]$?

Problem 15. (by Prof. Omar Kihel) Find an example of a number field \mathbb{K} such that

(13)
$$R = \bigcup_{i=1}^{n} \mathbb{Z}[\theta_i],$$

i.e. its ring of integers R is not monogenic.

The remaining problems of this document are proposed by Prof. Claude Levesque and Prof. Michel Waldschmidt

Let \mathbb{K} be a number field. Using Schmidt's Subspace Theorem, it has been proved in [2, Corollary 3.6] that there exists a positive constant $c_{\mathbb{K}}$, depending only on \mathbb{K} with the following property. Let ε be a unit in \mathbb{K} of degree ≥ 3 . Let $F_{\varepsilon}(X,Y) \in$ $\mathbb{Z}[X,Y]$ be the binary form of degree $[\mathbb{Q}(\varepsilon) : \mathbb{Q}]$ such that $F_{\varepsilon}(X,1)$ is the irreducible polynomial of ε . If the height $h(\varepsilon)$ of ε satisfies $h(\varepsilon) \geq c_K$, then there is no $(x,y) \in \mathbb{Z}^2$ satisfying $F_{\varepsilon}(x,y) = \pm 1$ and $xy \neq 0$.

Here, h is the logarithmic height - since two norms on a finite dimensional vector space are equivalent, the choice of the height does not matter.

Our first problem is the following one.

Problem LW1. Give an effective upper bound for c_K .

One could be more ambitious and ask for an upper bound depending only on the degree of \mathbb{K} . For such a uniform estimate, some exceptional families of Thue equations having very large exceptional solutions should be excluded... at least to start with. Let us give examples of such families.

Let $c \in \{1, -1\}$. Let g(X) be a non constant monic polynomial of degree n-2 and let a be a rational integer. Consider the (assumed irreducible) polynomial

$$f(X) = X(X - a)g(X) + c_{1}$$

which is the minimal polynomial of a unit of degree n. Then the binary form

$$F(X,Y) = Y^n f(X/Y) = X(X - aY)Y^{n-2}g(X/Y) + cY^n$$

satisfies F(a, 1) = c, $F(-a, -1) = (-1)^n c$. This shows that the exceptional solution (a, 1) can be as large as one pleases.

Consider the special case where the polynomial (X - a)g(X) has n - 1 distinct roots in \mathbb{Z} . Let $c \in \{1, -1\}, n \geq 3$ and let f(X) be the (assumed irreducible) polynomial

$$f(X) = X \prod_{i=1}^{n-1} (X - a_i) + c$$

where the a_i 's are distinct nonzero integers. Then the binary form

$$F(X,Y) = Y^{n} f(X/Y) = X \prod_{i=1}^{n-1} (X - a_{i}Y) + cY^{r}$$

satisfies for $i = 1, \ldots, n-1$,

$$F(a_i, 1) = c, \ F(-a_i, -1) = (-1)^n c$$

This last example shows that the larger n is, the larger the cardinality of exceptional solutions is.

As a first step towards a uniform bound, we restrict ourselves to specific families of Thue equations. To start with, consider the family \mathbb{K}_t $(t \ge 0)$ of the simplest cubic fields of Shanks. The field \mathbb{K}_t is the cyclic cubic field $\mathbb{Q}(v_t)$ where v_t is a root of the polynomial $P_t(X, 1)$ where

$$P_t(X,Y) = X^3 - (t-1)X^2Y - (t+2)XY^2 - Y^3.$$

Problem LW2. Does there exist an absolute positive constant c with the following property. Let $t \ge 0$ and let ε be a unit of K_t with $\varepsilon \ne \pm 1$. Let $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ satisfy $\max\{|x|, |y|\} \ge 2$ and $F_{\varepsilon}(x, y) = \pm 1$. Then

(14)
$$\max\{|x|, |y|, t, h(\varepsilon)\} \le c.$$

For this family, a partial result is known, involving a rank one subgroup of the group of units of K_t . Indeed, the following result is proved in [3]. The assumptions $a \ge 1$, $F_{u_t^a}(x, y) = \pm 1$ and $\max\{|x|, |y|\} \ge 2$ imply (14) with $\varepsilon = u_t^a$ and c replaced with another effectively computable absolute constant. It would be interesting to decide whether the list of 27 exotic solutions given in [3, § 15] is complete.

Problem LW3. Is it true that the conditions $F_{u_t^a}(x, y) = \pm 1$ and $\max\{|x|, |y|\} \ge 2$ imply $t \le 4$ and $a \le 5$?

The next and last problem is a program of research. Let $F_t \in \mathbb{Z}[X, Y]$ be a family of irreducible binary forms of degrees ≥ 3 . For each $t \geq 0$, let α_t be a root of $F_t(X, 1)$. For ε a unit of degree ≥ 3 in $\mathbb{Q}(\alpha_t)$, we have a Thue equation $F_{\varepsilon}(X, Y) = \pm 1$ for which it makes sense to consider the analogs of Problems LW2 and LW3.

Problem LW4. For each of the 22 families of Thue equations listed in [1, §4.1], prove that there exists an absolute constant c > 0 such that, as soon as $\max\{t, h(\epsilon)\} \ge c$, there is no $(x, y) \in \mathbb{Z}^2$ satisfying $\max\{|x|, |y|\} \ge 2$ and $F_{\varepsilon}(x, y) = \pm 1$.

A first step would be to consider only a rank one subgroup of the units of $\mathbb{Q}(\alpha_t)$. So far, this has been done only for the simplest cubic fields.

References

- C. HEUBERGER, Parametrized Thue Equations. A Survey, Proceedings of the RIMS symposium Analytic Number Theory and Surrounding Areas, Kyoto, Oct 18-22, 2004, RIMS Kôkyûroku, vol. 1511, 2006, pp. 82-91. http://wwwu.aau.at/cheuberg/publications/index.html
- C. LEVESQUE AND M. WALDSCHMIDT, Familles d'équations de Thue-Mahler n'ayant que des solutions triviales, Acta Arith. 155 (2012), 117-138.
 arXiv:1312.7202 [math.NT]
- C. LEVESQUE AND M. WALDSCHMIDT, A family of Thue equations involving powers of units of the simplest cubic fields, J. Théor. Nombres Bordx. 27, No. 2 (2015), 537-563.
 arXiv:1505.06708 [math.NT]